
1

Creating Intelligence is a Problem of Philosophy, and
Programming 3
By James Lewis

July 15, 2021

This is the third in a series of short papers discussing why creating intelligence is more

likely today than ever before, and not because of deep learning. Programmers have

other options for developing intelligence. But before I continue, I need to answer some

important questions, such as:

Why should we create intelligence? Considering the disappointments investors and

technologists are experiencing with practical AI solutions, it’s a timely question. There

can be only one answer. We create intelligence for our pleasure.

But what is this pleasure and where do we find it in our solution? It turns out there’s a

book that answers that question, “The Pleasure of the Text” by Roland Barthes. Barthes

had a unique talent for de-mystifying our relationships with books, photographs,

movies, news, fashion. To continue this project without understanding his work would

be like developing software for an enterprise with no information from the people who

understand the enterprise best. In terms of culture and communication Barthes is the

subject matter expert.

Here are a few points Barthes brings up:

• Human-created intelligence must demonstrate desire for person it interacts with;

it must convince that person that he or she is wanted. There are various ways of

doing this, of which anyone in a relationship is aware, or needs to be.

• Barthes also refers to “cutting” or the cutting and fitting together of two

disparate things. (May be referred to as antithesis.) An example of this would be a

movie in which a bank teller and philosophy student meet.

• Also, nothing should be revealed all at once. We should only get glimpses of

what we want to see, intermittently. That way we can enjoy seeing things being

revealed.

And now comes the question of how. How do we provide the pleasure? For the

intelligence we create, the intelligence must decode what its interlocutor says,

successfully, or not (even we humans often have a problem with this) and then project a

thought (sentence) into the conversation.

And these are helpful technologies we have today for doing so:

2

Object-orientated and functional, or declarative, programming

Sentences are, or course, composed of words, words with different properties that must

be sorted through, picked, and matched. Consider one popular way we used to sort

strings with procedural programming, the “bubble sort.” Here is the bubble sort in C++

(link: https://www.geeksforgeeks.org/sorting-strings-using-bubble-sort-2/) :

Code:

// C++ implementation

#include<bits/stdc++.h>

using namespace std;

#define MAX 100

void sortStrings(char arr[][MAX], int n)

{

 char temp[MAX];

 // Sorting strings using bubble sort

 for (int j=0; j<n-1; j++)

 {

 for (int i=j+1; i<n; i++)

 {

 if (strcmp(arr[j], arr[i]) > 0)

 {

 strcpy(temp, arr[j]);

 strcpy(arr[j], arr[i]);

 strcpy(arr[i], temp);

 }

 }
 }

}

int main()

{

 char arr[][MAX] =
{"GeeksforGeeks","Quiz","Practice","Gblogs","Coding"};

 int n = sizeof(arr)/sizeof(arr[0]);

 sortStrings(arr, n);

 printf("Strings in sorted order are : ");
 for (int i=0; i<n; i++)

 printf("\n String %d is %s", i+1, arr[i]);

 return 0;

}

3

Result:

Strings in sorted order are :
 String 1 is Coding
 String 2 is Gblogs
 String 3 is GeeksforGeeks
 String 4 is Practice
 String 5 is Quiz

This code cycles through an array of strings created in main() and called “arr”, which is

then sorted in sortStrings(). The array is sorted by going through the array comparing

each element with the next and then switching their positions in the array if the next

element should come before the first element and repeating this process until all

elements are sorted in alphabetical order.

But, to create an intelligence we need to do a lot more with words than sort them in

order. To illustrate (we would never program anything this specific in an intelligence),

suppose the intelligence needs to remember the name of someone it met. The

intelligence knows the name of the person has the letters “rry” in the name, Larry, or

something like that, but the intelligence is certain the person’s name is not “Terry” or

“Jerry”. In this case we might start out with two lists of names (the code is c#):

Code:

var definatelyNot = new List<string> {"Terry","Jerry"};

var nameList = new List<string> {"Abigail","Adah","Adia","Alexandra","Alice",
etc. };

var possibleNames = nameList.Where(p => !definatelyNot.Any(p2 => p2 ==
p)).Where(x => x.EndsWith("rry")).GroupBy(obj => obj).Select(y =>
y.First()).OrderBy(x => x).ToList();

Result:

"Barry",

"Harry",

"Larry",

"Perry"

The code declares two lists and then with one line gets the names from nameList that

are not in the definatelyNot list and end with “rry”, eliminates any duplicates, and orders

the results alphabetically. We can see the abstraction in the declarative statement allows

us to do in one line of code something that would be overly complex using a procedural

4

method. This power of abstraction multiplied by many, many lines of code enables us to

create intelligence.

Modern Search Technology

I mentioned sentences earlier, which raises the question: Where does our human-

created intelligence get its sentences? There are two options here, the intelligence

composes the sentences, or it finds them. With the first option, we need a process for

composing sentences. But do I know the process for creating sentences? I do not. I am

not conscious of any process for composing a sentence. I just know I need a sentence,

become aware of the sentence, and then type it onto the page. Writing code to replicate

a process I do not know, or to prove someone else’s semantic theory, seems impractical.

(Barthes thought a sentence is complete (The Pleasure of the Text, p. 50). Wittgenstein

considered the sentence synonymous with the proposition, in which a “a thought finds

an expression that can be perceived by the senses (Tractatus Logico-Philosophicus, 3.1).)

It turns out, we have far better tools than ever before for finding a sentence. At one time

we could only search for specific strings of text, and augment our searches using

“wildcards” such as “%”. A search string “car” would not find “cars”, so I would use

something like “car%”, but of course that would return “card”, and so our search query

gets increasingly complex.

Now search engines such as Lucene use a process call stemming which completes

searches by using a word’s root. In the above case the search string “car” would find

“cars” as well, but not “card”.

Search technology offers other features. We can use the “bag of words” approach, which

reduces a sentence or sentences, for instance, to a list of words, and we can adjust the

results of our search using certain metrics found in the list. We can also search for

specific words arranged in a particular way, or certain phrases, and even search using

combinations of these searches. Modern search technology also offers something else

important. Speed. This is important because our intelligence may need to search for

sentences in different ways and choose between the results it gets back. This must

happen relatively quickly in a conversation.

Search technology is easy to install on almost any computer. It can be used in many

different approaches to creating intelligence.

The Internet

The author and artist Douglas Coupland wrote “I’m 59 and a half years old – and these

days I no longer feel that I identify as a human being. I’ve turned into an app. I’m a filter

5

for words. I filter the ways I experience the world.” Coupland, D. (2021, June 19) Douglas

Coupland on Generation X at 30: ‘Generational Trashing is eternal.’ The Guardian

https://www.theguardian.com/books/2021/jun/19/ douglas-coupland-on-generation-x-

at-30-generational-trashing-is-eternal.

The internet has changed everything about us. The internet has also made human-

created intelligence possible. Ri, the intelligence I am working on, has no sensory

information and no life history, yet. It must borrow representations of these things, and

they are provided by the over 7,000,000 sentences Ri has in its index. I could not provide

Ri with 7,000,000 sentences without the internet. The internet also provides Ri with

people to talk to, and that’s important because intelligence needs social interaction to

grow.

The Future

I started this series by defining human-created intelligence as autonomous software that

can find its own value, and I believe I have shown it is possible to create such software

with tools available to all programmers. These are exciting times. The biggest

companies, and countries, have made expensive bets on “AI” and these bets, while they

may pay off with limited successes, have failed to get us measurably closer to the dream

of an autonomous robot, a dream that many, such as Alan Turing, have had for

centuries. Today that dream may be achieved by an individual programmer, or a small

group.

https://www.theguardian.com/books/2021/jun/19/%20douglas-coupland-on-generation-x-at-30-generational-trashing-is-eternal
https://www.theguardian.com/books/2021/jun/19/%20douglas-coupland-on-generation-x-at-30-generational-trashing-is-eternal

